
Large Language Models in Software Engineering:

A Critical Review and Future Research Directions

Ali Bektas

June, 2024

Abstract

The development of Transformer-based Large Language Models (LLMs) has led
to a burgeoning interest in their applications within the Software Engineering
(SE) domain, as evidenced by the surge in related publications. Existing sur-
veys, such as those conducted by Zheng et al. [27] and Hou et al. [9], have
documented the extensive utilization of LLMs in SE, exploring a variety of ap-
plications and methodologies. Fan et al. [5] describe the field of LLMs for SE
as rapidly developing but still in an embryonic stage, highlighting the signifi-
cant potential and the necessity for ongoing academic exploration. Their survey
specifically aims to identify challenges and open problems, presenting a critical
analysis of the early stages of this emerging field. In light of the rapid develop-
ment of this field, which complicates a comprehensive review, this thesis is aimed
at further exploring the field of LLM-based Software Engineering. It focuses on
identifying new open problems and challenges and delineating potential future
directions to provide additional guidance for the community in this dynamically
evolving field.

To guide this investigation, the study is framed around two research ques-
tions:

• RQ1: How do open problems, applied methodologies, challenges, and
limitations in the selected studies vary across different SE tasks?

• RQ2: Given the task-specific and methodological contexts, how can the
identified open problems, challenges, and limitations be addressed, and
what potential directions can be proposed?

This research, through a detailed review of the literature identified by Hou
et al. [9], extracts, compares, and analyzes data to identify specific challenges
and insights. It highlights data-related challenges in SE tasks related to planning
and effort estimation, underlining the need for training datasets that adequately
represent a diverse array of projects and programming languages. Additionally,
it points out that while some research papers leverage the non-deterministic na-
ture of LLMs in their evaluation strategies, many studies lack this consideration
in their methodologies. In activities such as code generation, debugging, and
bug fixing, several papers have recognized the trade-off between the advantages
of language models like ChatGPT and the effort required to provide additional
information for debugging purposes. There is ongoing research in this direction,
indicating potential areas for extension.

The thesis employs a structured methodological framework comprising pre-
defined attributes — Task Context, Evaluation Criteria, Methodological Ap-
proach, and Insights and Reflections. This framework facilitates a systematic
comparative analysis aimed at elucidating the variety of open problems, chal-
lenges, and limitations in the practical application of LLMs across different SE
tasks and methodologies. Through this analysis, the thesis contributes to a more
nuanced understanding of these issues, highlighting significant areas where the
field may develop and improve.

The aim of this research is to analyze and synthesize the broad spectrum
of existing problems and limitations in the integration of LLMs into SE tasks,
with a focus on deriving actionable insights and proposing potential research di-
rections. These insights are intended to guide future studies, thereby improving
the practical application of LLMs in SE and advancing the field with innovative
solutions.

Zusammenfassung

Die Entwicklung von auf Transformern basierenden großen Sprachmodellen (LLMs)
hat zu einem wachsenden Interesse an deren Anwendungen im Bereich des
Software Engineerings (SE) geführt, wie der Anstieg der damit verbundenen
Veröffentlichungen zeigt. Bestehende Untersuchungen, wie die von Zheng et al.
[27] und Hou et al. [9] durchgeführten, haben die umfangreiche Nutzung von
LLMs im SE dokumentiert und eine Vielzahl von Anwendungen und Methoden
erforscht. Fan et al. [5] beschreiben das Feld der LLMs für SE als sich rasch
entwickelnd, jedoch noch in einem frühen Stadium, und heben das bedeutende
Potenzial und die Notwendigkeit einer fortlaufenden akademischen Erforschung
hervor. Ihre Untersuchung zielt speziell darauf ab, Herausforderungen und of-
fene Probleme zu identifizieren und präsentiert eine kritische Analyse der frühen
Entwicklungsstadien dieses aufkommenden Bereichs. Angesichts der schnellen
Entwicklung dieses Fachgebiets, die eine vollständige Überprüfung erschwert,
zielt diese Arbeit darauf ab, das Feld des auf LLM basierenden Software Engi-
neerings weiter zu erkunden. Sie konzentriert sich darauf, neue offene Probleme
und Herausforderungen zu identifizieren und mögliche zukünftige Richtungen
aufzuzeigen, um der Gemeinschaft zusätzliche Orientierung in diesem dynamis-
chen Bereich zu bieten.

Um diese Untersuchung zu leiten, ist diese Arbeit um zwei Forschungsfragen
strukturiert:

• RQ1: Wie variieren offene Probleme, angewandte Methoden, Heraus-
forderungen und Einschränkungen in den ausgewählten Studien über ver-
schiedene SE-Aufgaben?

• RQ2: Angesichts der aufgabenspezifischen und methodischen Kontexte,
wie können die identifizierten offenen Probleme, Herausforderungen und
Einschränkungen adressiert werden, und welche potenziellen Forschungsrich-
tungen können vorgeschlagen werden?

Diese Arbeit extrahiert, vergleicht und analysiert durch eine detaillierte
Überprüfung der von Hou et al. [9] identifizierten Literatur Daten, um spez-
ifische Herausforderungen und Erkenntnisse zu identifizieren. Sie beleuchtet
datenbezogene Herausforderungen bei SE-Aufgaben im Zusammenhang mit Pla-
nung und Aufwandsschätzung und betont die Notwendigkeit von Trainings-
datensätzen, die eine vielfältige Auswahl an Projekten und Programmiersprachen
adäquat repräsentieren. Darüber hinaus wird darauf hingewiesen, dass einige

Forschungspapiere die nicht-deterministische Natur von LLMs in ihren Eval-
uationsstrategien nutzen, viele Studien jedoch diesen Aspekt in ihren Meth-
oden nicht berücksichtigen. In Aktivitäten wie Codegenerierung, Debugging
und Fehlerbehebung haben mehrere Arbeiten den Kompromiss zwischen den
Vorteilen von Sprachmodellen wie ChatGPT und dem Aufwand, der notwendig
ist, um zusätzliche Informationen für Debugging-Zwecke bereitzustellen, erkannt.
Es gibt laufende Forschungen in diese Richtung, die potenzielle Erweiterungs-
bereiche aufzeigen.

Diese Arbeit verwendet einen strukturierten methodischen Rahmen, der
vordefinierte Attribute umfasst – Aufgaben-Kontext, Evaluationskriterien, method-
ischer Ansatz und Erkenntnisse und Reflexionen. Dieser Rahmen ermöglicht
eine systematische vergleichende Analyse, die darauf abzielt, die Vielfalt der of-
fenen Probleme, Herausforderungen und Einschränkungen bei der praktischen
Anwendung von LLMs über verschiedene SE-Aufgaben und Methoden zu klären.
Durch diese Analyse trägt die Arbeit zu einem differenzierteren Verständnis
dieser Probleme bei und hebt bedeutende Bereiche hervor, in denen sich das
Feld entwickeln und verbessern kann.

Das Ziel dieser Arbeit ist es, das breite Spektrum bestehender Probleme und
Einschränkungen bei der Integration von LLMs in SE-Aufgaben zu analysieren
und zu synthetisieren, um umsetzbare Erkenntnisse zu gewinnen und potenzielle
Forschungsrichtungen vorzuschlagen. Diese Erkenntnisse sollen zukünftige Stu-
dien leiten und damit die praktische Anwendung von LLMs in SE verbessern
und das Feld mit innovativen Lösungen vorantreiben.

1 Introduction

The introduction of transformer-based models has significantly influenced the
field of natural language processing (NLP), primarily through the introduc-
tion of attention mechanisms. These mechanisms allow models to process input
sequences in their entirety rather than sequentially, greatly enhancing their abil-
ity to understand context and relationships within text. This advancement has
not only overcome limitations related to long-range dependencies and contex-
tual consistency but has also catalyzed the adoption of Large Language Models
(LLMs) across a variety of applications.

As the use of transformer-based LLMs expands into the domain of Software
Engineering (SE), a surge in scholarly activity and practical applications has
been noted. The number of studies involving LLMs in SE tasks has shown
remarkable growth, as documented by Hou et al. [9], indicating a robust interest
and perceived potential within this intersection.

However, alongside these advancements, a range of challenges and open prob-
lems persist that complicate their application in software engineering. These
issues include the scalability of model sizes, the dependency on extensive and
diverse datasets, and the challenge of code generation ambiguity, which often
leads to syntactically correct but functionally inadequate outputs. Furthermore,
the generalizability of LLMs across different SE tasks, their interpretability, and
the ethical implications of their use remain significant concerns [9].

Fan et al. [5] further emphasizes the underexplored areas within this field,
particularly in dynamic adaptation and the fine-tuning of LLMs specifically for
SE tasks, suggesting a pressing need for tailored methodologies that leverage
the unique aspects of software as opposed to general language processing.

This thesis aims to address these challenges by focusing on the identification
and analysis of open problems and challenges in the utilization of LLMs for
SE tasks. By exploring how these issues vary across different SE tasks and
methodologies applied in the selected studies, this research seeks to provide
a structured overview of the field and propose potential solutions that could
guide future research efforts. This approach is especially pertinent given the
rapid evolution of LLMs and their increasingly complex integration into SE
tasks.

The structure of the thesis is as follows:

1. State of the Art: This section reviews essential concepts and current
trends in both software engineering and LLM applications.

2. Methodology: Here, the systematic approach adopted for literature re-
view and data extraction is described, which is crucial for addressing the
research questions.

3. Results: Key findings are discussed in this section, highlighting how
LLMs are applied and evaluated within SE.

4. Conclusions: The thesis concludes with a synthesis of insights that could
influence future research and practice in the field.

1

1.1 Motivation

The integration of LLMs into SE reflects a rapidly evolving landscape where
theoretical concepts meet practical application. My involvement with this field
stems from direct experiences in university projects and student employment,
where the nuanced challenge of evaluating machine learning models first became
evident to me. Particularly revealing was the realization that even for seem-
ingly straightforward classification tasks, like those involving imbalanced data,
choosing the right evaluation metrics and crafting a sound evaluation strategy
to accurately assess the solution’s quality for the specified task is a important
and complex task.

Building upon the insights from [9], it is recognized that while LLMs are
increasingly deployed across various SE tasks—regression, classification, recom-
mendation, and generation—the conventional metrics like Accuracy, Recall, or
F1-score often fall short of providing a comprehensive assessment of a model’s
performance. These metrics might not fully capture the nuanced effects and
impacts LLMs have within specific SE tasks, potentially overlooking aspects
like interpretability, robustness, or error sensitivity. This observation aligns
with broader findings from [3] and [7], which emphasize the need for evolving
evaluation methodologies alongside LLM advancements. They call for more
inclusive, adaptive, and enhancement-oriented evaluation frameworks that not
only benchmark performance but also identify and address areas for improve-
ment, ensuring LLMs’ alignment with ethical standards and practical utility in
SE.

1.2 Related Work and Research Corpora

This thesis builds upon a comprehensive literature review detailed in the foun-
dational paper by [9]. This pivotal review thoroughly explored the broader ap-
plication of LLMs in SE, examining the types of LLMs utilized, data handling
methods, optimization and evaluation techniques employed, and the specific
tasks these models have been applied to. By delving deeper into the methodol-
ogy and findings of this foundational literature review, this subsection provides
crucial insights into the landscape from which this research sources its corpus.

The identification process in the basis paper [9] followed a carefully struc-
tured approach, adhering to the SLR methodologies established by Kitchenham
et al. [11] [10].

The five-step seach strategy started by selecting six prominent SE venues—ICSE,
ESEC/FSE, ASE, ISSTA, TOSEM, and TSE—for manual searches and ex-
tended their scope to include seven databases: IEEE Xplore, ACM Digital Li-
brary, ScienceDirect, Web of Science, Springer, arXiv, and DBLP for automated
searches. A quasi-gold standard was developed by screening papers from man-
ual search based on specific inclusion and exclusion criteria, followed by the
creation of a search string informed by domain expertise for the automated
search. The process concluded with a snowballing search, integrating findings
from both manual and automated searches to ensure a comprehensive collection

2

of pertinent studies for subsequent analysis.
The manual and automated search resulted in 164,366 papers which was re-

duced to a focused set of 218 foundational studies through a series of structured
steps applied in the study selection process. After an initial automated filter
based on paper length trimmed the count to 63,404, a thorough title, abstract,
and keyword review further reduced the pool to 4,341. At this juncture, the re-
searchers identified the publication venues to discern the source quality, which,
along with subsequent deduplication and in-depth full-text reviews consider-
ing relevance and rigor, distilled the collection to 548. Additional exclusion of
papers was done by applying quality assessments and manually scoring papers
based on content relevance and publication type/ venue quality finally narrowed
it down to 218 papers. A subsequent snowballing search, executed on these se-
lected studies, yielded an additional 11 papers, thereby establishing a final set
of 229 papers after deduplication and verification.

The distribution of the 229 relevant papers identified demonstrates that 38%
were published in peer-reviewed venues like ICSE, TSE, ICSME, and SANER,
while 62% appeared on arXiv, reflecting the field’s swift evolution and the pre-
peer review status of much Large Language Models for Software Engineering
(LLM4SE) research. A temporal analysis shows a significant surge in publica-
tions from 2020 to 2023, highlighting escalating interest and research activity
in LLM4SE.

1.3 Research Questions

In this work, the focus is on evaluating methodologies applied to solutions that
incorporate Large Language Models (LLMs) for SE tasks. Particular emphasis is
placed on studies presenting and assessing LLM-based solutions for specific SE
challenges, as these represent the majority of the examined works. Additionally,
the analysis includes comparative studies contrasting LLMs with traditional
models and investigations that concentrate on the unique properties of LLMs
within SE contexts. The research questions (RQ1 and RQ2) aim to identify
the diversity and specificity of evaluation methods across different SE tasks and
methodologies and to explore how these methods can be optimized to address
the unique requirements and challenges, thereby enhancing understanding of
the effectiveness and practical applicability of LLMs in SE.

• RQ1: How do evaluation methods vary across different software engineer-
ing tasks and methodologies in the selected studies?

• RQ2: Given their task and methodology-specific contexts, how can the
identified evaluation methods be enhanced to address their respective chal-
lenges?

In the research questions of this master thesis, ”Evaluation Methods” specif-
ically refers to the techniques and approaches used for assessing the overall ef-
fectiveness and efficiency of the complete solution proposed for solving the SE

3

Task, and not to the methods used for evaluating the Language Model (LLM)
itself.

2 State of the Art

2.1 Large Language Models

Natural Language Processing (NLP) is a domain within artificial intelligence
that focuses on the interaction between computers and humans through natural
language. The objective is to enable computers to understand, interpret, and
generate human language to support tasks like translation, summarization, in-
formation retrieval, sentiment analysis, and more. Within this field, a language
model is a computational tool that predicts the likelihood of a sequence of words
or phrases, capturing the essence of language syntax and semantics based on
vast amounts of training text data.

The evolution of language models has unfolded through distinct phases, each
marked by significant technological milestones. In the 1950s and 1960s, the field
was dominated by rule-based models, relying on manually crafted linguistic rules
to process language. The 1980s and especially the 1990s witnessed a pivotal shift
to statistical models that used large text corpora to infer language patterns,
enhancing the adaptability and scalability of language processing.

The late 1990s and early 2000s introduced neural network-based models,
notably Recurrent Neural Networks (RNNs) [12], which excelled in sequential
data processing, laying the groundwork for sophisticated text understanding and
generation. The evolution continued into the mid-2010s with the emergence of
pre-trained models, paving the way for the development of Large Language
Models (LLMs). A transformative moment occurred around 2017 with the in-
troduction of transformer models in the ”Attention Is All You Need” paper [23],
which for the first time relied solely on self-attention mechanisms, eliminating
the need for RNNs or convolutional layers. This marked a significant paradigm
shift from earlier models that combined self-attention with other architectures,
to a new era where self-attention alone could drive deep, contextually aware lan-
guage understanding, propelling the field of NLP into new frontiers of capability
and flexibility.

Sequential models, particularly Recurrent Neural Networks (RNNs) and
their advanced variants like Long Short-Term Memory (LSTM) networks, have
been pivotal in processing language data due to their inherent design to handle
sequential information. They process text one token at a time, maintaining a
hidden state that theoretically encapsulates the information from all previously
seen tokens, thus creating a sense of memory. However, these models often
struggle with long-range dependencies due to issues like vanishing or exploding
gradients.

A pivotal feature of the Transformer architecture is its self-attention mecha-
nism, which significantly enhances the model’s ability to address the limitations
inherent in sequential processing. Unlike sequential models that process data

4

in order, self-attention allows the model to weigh and relate any two tokens in
the input, regardless of their positions. This mechanism computes the repre-
sentation of each token by considering how it relates to every other token in
the sequence, enabling the model to capture dependencies without being con-
strained by the distance between tokens. As a result, self-attention provides
a more flexible and context-aware way to encode the semantics of the input
sequence, enhancing the model’s ability to understand and generate language
with greater nuance and coherence.

The self-attention mechanism within large language models represents a
paradigm shift in how models ascertain and encode the relationships between
tokens in a sequence. Specifically, self-attention calculates alignment scores,
typically through a scaled dot-product attention process (Fig. 2 left), where
each token’s representation is dynamically influenced by computing how much
focus it should place on every other token in the sequence. These scores deter-
mine the extent to which each token should attend to every other token across
the sequence, enabling the weighted aggregation of token representations that
effectively contextualizes each word within its surrounding linguistic environ-
ment.

Figure 1: Illustration of the Scaled Dot-Product Attention and Multi-Head
Attention mechanisms, adapted from [23]. The left part of the image demon-
strates the computation within a single attention head, focusing on the scaled
dot-product attention process, while the right part delineates the aggregation
of multiple such heads in the multi-head attention framework.

Diving deeper into the multi-head attention feature (Fig. 1 right), we under-
stand that it subdivides the attention mechanism into multiple ”heads,” allowing
the model to concurrently explore different dimensions of the data. Each head
can potentially capture distinct types of relationships, such as varying syntactic

5

or semantic connections, by computing separate sets of alignment scores. After
this parallel processing, the diverse outputs from all heads are concatenated and
linearly transformed, yielding a rich, integrated representation that encapsulates
various linguistic nuances and facets, thereby enhancing the model’s linguistic
comprehension.

The attention mechanism inherent in transformer models not only enhances
their performance but also offers a level of interpretability that is crucial for
understanding their inner workings. Recent works [24] [26] have delved into
exploring these models’ attention mechanisms through visualization techniques,
shedding light on how these models process and prioritize different parts of the
input data.

In Figure 2, we observe a visualization that elucidates the functionality of two
attention heads processing the word ’its’ within an input sequence. It becomes
clear from this visualization that these attention heads are adept at anaphora
resolution, showcasing their ability to link referential expressions with their
antecedents effectively. Additionally, Figure 3 provides insights to the scaled
dot-product attention mechanism within a single attention head, focused on the
token ’.’. This visualization intuitively demonstrates how the attention values
evolve, emphasizing a pattern where attention diminishes as the distance from
the sentence-ending token increases.

Figure 2: Illustration , adapted from [23]. Isolated attentions from just the
word ‘its’ for attention heads 5 and 6. Note that the attentions are very sharp
for this word ‘Law’ .

Typically, a model might employ 8 or 16 attention heads, with the choice of

6

Figure 3: Illustration adapted from [24]. Neuron view of GPT-2 for layer 1, head
10 with last token selected. Positive and negative values are colored blue and
orange, respectively, with color saturation based on magnitude of the value. As
with the attention-head view, connecting lines are weighted based on attention
between the words. Blue arrows mark positions in the element-wise products
where values decrease with increasing distance from the source token (becoming
darker orange or lighter blue).

this parameter influencing the granularity and scope of relationships the model
can capture, thereby affecting its performance and interpretability [24] [26]. This
feature contrasts with the sequential nature of RNNs, where information pro-
cessing is inherently linear and time-dependent. Self-attention’s parallelizable
structure not only mitigates these limitations but also facilitates significantly
faster training times and improved handling of longer sequences.

In the context of NLP tasks, these architectural innovations have proven in-
strumental across a range of applications, from translation to content generation,
underpinning the versatile and powerful capabilities of large language models.
However, it is also crucial to acknowledge inherent challenges, such as increased
computational demands and potential difficulties in model interpretability, par-
ticularly in dissecting the specific contributions of individual attention heads
or understanding the model’s decision-making process in detail. Acknowledging
these limitations alongside the benefits provides a comprehensive understanding
of the self-attention and multi-head mechanisms within the larger narrative of
language model evolution.

Following the introduction of transformer models, a notable development
in the field of NLP is the application of Reinforcement Learning from Human
Feedback (RLHF) to enhance the performance of large language models. The
study by Ziegler et al. [29] exemplifies this approach, applying RLHF to re-

7

fine pre-trained language models for specific tasks like text continuation and
summarization, informed by human feedback.

In their research, Ziegler et al. [29] demonstrate how RLHF can be used to
adjust language models based on human evaluations, aiming to produce out-
puts that are more aligned with human judgments of quality and relevance.
This process involves training a reward model from human preferences, which
is then used to guide the fine-tuning of language models, enhancing their ability
to generate text that resonates more aligned to with human readers preference.
The integration of RLHF represents a methodological advancement in the field,
enabling language models to evolve based on direct human input, thus improv-
ing their applicability and effectiveness in real-world tasks. This development
underscores the shift toward more interactive and adaptive systems in NLP,
where human feedback plays a vital role in refining AI outputs. Through such
advancements, language models continue to evolve, offering more sophisticated
tools for a variety of NLP applications, illustrating a commitment to aligning AI
systems more closely with human expectations and standards, and showcasing
the potential for these models to become more nuanced and context-aware in
their language generation capabilities.

2.2 Large Language Models for Software Engineering Tasks

Software Engineering (SE) emerged as a distinct discipline during a pivotal
period in the mid-20th century, marked by the rapid expansion of computing
technology. As hardware capabilities advanced, significant disparities in soft-
ware development methodologies became evident, leading to what is known as
the ”software crisis.” This crisis highlighted difficulties in developing reliable,
maintainable, and efficient software within acceptable timeframes and budgets.
In response, the seminal NATO conferences of the late 1960s were convened.
These conferences played a crucial role in defining SE as a critical field aimed
at addressing the complexities of software creation. Due to its abstract nature,
software allows for substantial customization and wide applicability but also in-
troduces significant complexities that challenge the automation of development
processes. This dynamic requires a careful balance between specialized solutions
and broadly applicable approaches in software design, underscoring the nuanced
and continuously evolving nature of the field. The discipline of SE continues to
adapt, applying established principles to new challenges across a diverse range
of application domains [16, 2].

SE orchestrates all aspects of software production by applying engineering
principles to develop functional, dependable, and efficient software within finan-
cial and temporal constraints. Unlike computer science, which explores theo-
retical aspects, or systems engineering, which addresses broader systems issues,
SE focuses specifically on software solutions. It incorporates the Software De-
velopment Lifecycle (SDLC), a systematic process that includes phases such as
planning, design, implementation, testing, deployment, and maintenance. This
lifecycle helps manage and streamline the creation and maintenance of software,
accommodating a diverse array of software types and usage scenarios. While no

8

single methodology fits every project, leading practices vary from stand-alone
applications to embedded systems. However, principles like effective process
management, dependability, clear requirement gathering, and efficient resource
use remain universal. These principles ensure the delivery of reliable software
that meets various user and market demands, amidst ongoing technological and
business challenges [20].

Building on the advancements in artificial intelligence research within SE,
such as the optimization techniques employed in Search-Based Software Engi-
neering (SBSE) which also involved natural language processing [21, 13], an
intriguing new focus has emerged: the application of Large Language Models
(LLMs) in SE . This area explores the potential of LLMs to manage tasks that
involve understanding and generating human language, now directed toward the
complexities of software development processes.

Since 2019, LLMs have garnered significant attention for their applications
in SE, reflecting a broader trend across computer science disciplines. According
to Fan et al. (2023), this focus has led to the recognition of LLM-based SE
as an emerging subdiscipline [5]. The authors highlight the substantial growth
in publications related to LLMs in SE, demonstrating the community’s rapid
adoption of this technology.

Supporting this observation, Hou et al. [9] document an exponential increase
in publications that integrate LLMs with SE tasks—from 7 papers in 2020 to an
impressive 160 in just the first half of 2023 [9]. This surge in research activity
has spurred the development of the term Large Language Models for Software
Engineering (LLM4SE), defining this vibrant area of study. According to Fan
et al. [5], since 2022, more than 10% of all LLM-related publications have focused
specifically on SE applications, underscoring the significant interest in this field
[5].

Additionally, Fan et al. [5] also note that while LLMs are extensively explored
in the domain of software development, certain subdomains such as Require-
ments Engineering and Design, and Refactoring are notably under-represented.
These areas, which rely heavily upon linguistic forms of analysis and the recog-
nition and prediction of patterns, are identified as surprisingly ripe for consid-
eration, presenting an opportunity for future research and application of LLMs
[5].

From the detailed analysis by Hou et al. [9], it is evident that LLMs are
currently being utilized across a spectrum of SE tasks. They are categorized
based on their architecture into encoder-only, encoder-decoder, and decoder-
only models, with the latter being the most utilized in SE, particularly for tasks
involving code generation and program repair. The popularity of decoder-only
models in SE underscores their effectiveness in tasks requiring deep syntactic
and semantic understanding of code. This effectiveness is attributed to the
autoregressive nature of decoder-only models, which allows them to generate
sequences of text by predicting the next token based on the context of the
preceding tokens. This capability is crucial for code generation and repair tasks,
where understanding the sequential and contextual relationships within the code
is essential for producing accurate and coherent outputs.

9

Data handling is another area of focus; the predominant use of open-source
datasets, which constitute approximately 59.35% of cases, shows a reliance on
widely accessible resources for training these models. Data types within these
datasets are primarily code-based and text-based, aligning with the strengths
of LLMs in handling complex structured data, which is crucial for SE tasks.

Moreover, Hou et al. [9] outlines specific optimization techniques like fine-
tuning and the Adam optimizer, which are commonly used to enhance the per-
formance of LLMs in SE. The use of prompt engineering, particularly in data-
scarce scenarios, further enhances these models’ adaptability and effectiveness,
allowing them to perform optimally across various SE tasks.

3 Method

3.1 Approach

In addressing the research questions, this research adopts a structured and it-
erative approach to examine the applied methodologies, evaluation strategies
and how the results are interpreted in the corpus of research papers utilizing
Large Language Models (LLMs) for solving Software Engineering (SE) tasks.
This approach is designed to extract, analyze, and refine data from the corpus
identified in the literature review by [9]. The intent is to extract the variability
of applied methodologies, evaluation practices challenges and limitations across
different SE tasks to forge targeted recommendations for their enhancement.
The following steps of the approach, visualized in Figure 4, are explained in
more detail:

Step 1: Paper and Attribute Selection

• Define a comprehensive set of attributes for extraction from the selected
papers, pivotal for elucidating the interplay between SE tasks, methodolo-
gies, evaluation methods and practical usability of the proposed solution.
These attributes should be capable of:

– Enhance understanding of SE task characteristics for practical us-
ability:

∗ Identify all SE Tasks the research paper covers.

∗ Highlight critical characteristics for practical usability. For in-
stance, in Code Search, it may be important to determine if the
correct match needs to be within the top 10 recommendations,
rather than strictly at the first rank.

∗ Consider task-specific needs. For example for vulnerability detec-
tion, weigh the importance of avoiding False Positive Predictions
(False Alarms) against covering all possible threats, even at the
cost of False Alarms.

– Understand the applied methodology, evaluation strategy and its im-
pacts for the practical usability of the solution:

10

∗ Data sampling: From which sources had data been sourced. As-
sess real-world task representativeness of data. Understanding
if the data helps in interpreting the results and accessing the
appropriateness of the evaluation strategy.

∗ Consider training strategy effects: For example, the choice be-
tween fine-tuning a smaller model with task-specific data versus
using a larger model trained on a broader corpus could mean
different genralizability capability of a model. If generalizability
is important for the SE Task then this needs consideration in the
evaluation strategy and in the interpretation of the results.

∗ Are the benchmarks used realistic to real world scenario? For ex-
ample in addressing code generation tasks, is different difficulty
and complexity levels of code considered? Is different program-
ming languages considered?

– Offer insights into outcomes, limitations, and future directions:

∗ Recognize study limitations and challenges.

∗ Summarize results.

∗ How does the interpretation of the results vary across studies?
Do different studies interpret the same evaluation outcome for
similar task differently? Are there patterns?

• Select an initial batch of 10 papers, representing the spectrum of SE ac-
tivities and ML tasks detailed in [9].

Step 2: In-depth Review and Data Extraction

• Systematically review the chosen papers to extract the designated at-
tributes, especially focusing on elucidating the evaluation methods and
methodologies within varied SE tasks with respect to the practical usabil-
ity.

• Cross-validate the extracted data with the supplementary materials from
the replication package 1 in [9] to ensure completeness.

• Continuously assess and refine the attribute set to encapsulate a holistic
view of the evaluation landscape, adapting to emergent insights.

Step 3: Iterative Refinement and Expansion

• Adjust the dataset iterative, incorporating new attributes identified during
the review to maintain a robust and coherent analytical framework across
all papers.

Step 4: Synthesis and Pattern Identification

1https://docs.google.com/spreadsheets/d/1iomMvoDL2znNDQ_J4aGnqb3BhZpEMlfz/

edit#gid=1471652439

11

• Synthesize the extracted data to delineate prevalent and outlier evaluation
strategies, applied methodologies, challenges and limitations discerning
patterns and variances linked to different SE tasks and methodologies,
aligning this analysis with RQ1.

Step 5: Comprehensive Review

• Extend the systematic application of the preceding steps across the entire
suite of 230 papers cataloged by [9], ensuring a thorough and representa-
tive analysis.

Step 6: Analysis and Recommendation Formulation

• Interpret the identified patterns and insights, correlating them with the
contextual demands of various SE tasks and methodologies to derive tar-
geted improvements, addressing RQ2. This step aims to refine the meth-
ods applied in the selected studies and proposes directions for future in-
vestigative pursuits.

12

Figure 4: Methodology flowchart outlining the steps for analyzing and enhancing
LLM evaluation in SE tasks.

3.2 Exploration of Replication Package from Literature
Review

In this section, we delineate the review process applied to the contents of the
replication package2 of [9] as of February 2024. Our objective is to scrutinize
the available data within the package to identify the papers that constitute
the literature review from [9] and to discern which information pertaining to
these reviewed papers is structured and accessible. This careful examination
aims to uncover potential facilitators for our analysis, ensuring we leverage
any structured information to augment our understanding and streamline our
research process.

The package comprises five Excel sheets: QAC, RQ1, RQ2, RQ3, and RQ4.
A preliminary review of the column names and entries revealed that these labels
stand for Quality Assurance Criteria and Research Questions 1-4, each sheet

2https://docs.google.com/spreadsheets/d/1iomMvoDL2znNDQ_J4aGnqb3BhZpEMlfz/

edit#gid=1471652439

13

containing relevant data.
Each sheet adheres to a uniform structure, presenting identifier informa-

tion for the reviewed papers, including Title, URL, Year, Venue, and Abstract,
succeeded by sheet-specific values.

QAC: In their inclusion criteria, the authors of [9] evaluated the quality of
each review paper, as detailed in the Study Selection section of [9], attributing
a score to 10 Quality Assurance Criteria (QAC). The QAC sheet encapsulates
the scores for these 10 criteria.

The Quality Assurance Criteria collectively assess the relevance, methodol-
ogy, clarity, and impact of the studies within the scope of software engineering
tasks, specifically examining their use of large language models (LLMs), pub-
lication venue prestige, motivation clarity, technique description, experimental
detail, findings confirmation, discussion on contributions and limitations, and
overall contribution to the academic or industrial community.

The sheets RQ1 to RQ4 provide structured documentation of the data ex-
tracted by [9] to address their respective Research Questions.

RQ1: This sheet includes information on the utilized large language mod-
els (LLMs) and their respective Transformer Types for each study reviewed.
Columns are designated with names of LLM Models, covering all within the
GPT and BERT series, and feature three additional columns to identify Trans-
former Types: Decoder only, Encoder only, or Decoder-Encoder. The inclusion
of a model in a study is indicated by a column value of ’1’ or detailed further
with specific information, such as the model’s number of parameters.

RQ2: This sheet organizes dataset-specific details, identifying the source of
the dataset as open-source, collected, constructed, or an industry dataset. It also
categorizes the type of data utilized in the studies, distinguishing among text-
based, code-based, graph-based, software-repository-based, or combined datasets.
The input types for LLMs are outlined as token-based, pixel-based, tree/graph-
based, or hybrid input types, with a ’1’ denoting usage or additional details
provided. A column on data preprocessing lists specific preprocessing steps
applied.

RQ3: This sheet provides information on the methods and metrics employed
for optimizing and evaluating the large language models (LLMs) as described
in the research studies. It includes a column for Parameter Optimization Algo-
rithms, indicating the techniques utilized, such as hyperparameter tuning, fine-
tuning, or a combination of both. It also details the specific optimizers used, for
instance, Adam, AdamW, or ZeRO. For selected studies, it documents strate-
gies to prevent overfitting within the combat overfitting column, mentioning ap-
proaches like early stopping and data augmentation. The sheet categorizes the
machine learning problem in the problem type column into classification, regres-
sion, generation, or recommendation. Additionally, a Metrics column records
the metrics applied by the research papers to assess their findings.

RQ4: This sheet organizes the research papers according to SE-Activities
and SE-Tasks. It features a dedicated column for each SE-Activity: Software
Requirements, Software Design, Software Development, Software Testing, Soft-
ware Management, and Software Maintenance. Within these columns, the cor-

14

responding SE-Task(s) addressed by the research are listed as values. It is ob-
served that some papers could not be associated with a specific SE-Task, marked
by the value other. Additionally, there are instances where certain studies are
not aligned with any SE-Activity.

Upon reviewing the list of paper titles retrieved, the paper [28] titled Large
language models are human-level prompt engineers stood out as it seemed un-
related to the application of LLMs in addressing a Software Engineering task.
This paper is listed in Table 6 of [9] among papers using Text-based datasets
and in Table 9 among those using Text as Tokens as input for the LLMs.

However, upon closer examination of the content, it was found to violate the
inclusion criterion 2) in Table 3, which states, ”The paper claims that the study
involves an SE task,” of the survey paper [9]. It appears this paper uses the SE
task of Program Synthesis to address the topic of automatic prompt engineering
for LLMs. For this reason, this paper is excluded from the investigation in this
work.

3.3 Review Process of the Survey Papers

Following the exploration of the replication package of the basic literature review
[9] and the identification of the papers belonging to the literature review, the
first iteration of Step 1 of the Approach described in Chapter 3.1 was conducted.

A subset of 11 papers covering a similar distribution of SE-Activity and
ML-Task as the proportion in [9] was selected. A first set of attributes to be
extracted from the papers under review was specified and refined during the
review of the subset of papers.

All papers were reviewed by a single reader, the author of this thesis, and
the following sections were reviewed as described below:

• Title, Abstract, and Introduction: Provided the most relevant infor-
mation to understand the SE-Task and the proposed solutions, with the
Abstract offering an initial glance at the applied methods, results, and
conclusions.

• Method or Approach Sections: Initially glanced over to gain an under-
standing of the methods and approaches employed, with thorough review
conducted if necessary to fully capture the details.

• Dataset or Sampling Strategy Sections: Initially reviewed to under-
stand how data was handled and utilized, with further detailed examina-
tion performed as required.

• Evaluation Strategy Sections: Thoroughly reviewed as needed to fa-
cilitate a comprehensive understanding of the evaluation methodologies
used.

• Tables, Figures, and Diagrams: Reviewed to provide clear insights
into the Method, Evaluation Strategy, and Results, offering a concise rep-
resentation of the research frameworks and findings.

15

• Results, Conclusions, and Limitations Sections: Reviewed to un-
derstand the outcomes, their interpretation, and any noted challenges or
limitations. Insights gained included:

– The outcomes of the studies.

– The authors’ interpretations of these outcomes.

– Challenges and limitations encountered during the research.

• Data Summarization: Information from each paper was summarized
for specific attributes to ensure good comparability between the papers:

– Categorical Data: Such as metrics used, was stored for better
comparability.

– Descriptive Data: Where a text summary was required (e.g. re-
sults or the authors interpretations), a concise summary was created
and stored.

By systematically reviewing these sections of the papers and summarizing
the relevant information, a comprehensive understanding of each study’s ob-
jectives, methodologies, evaluation strategies, and findings was obtained. This
process ensured a robust analysis aligned with the structured approach outlined
in Chapter 3.1.

Following the review, an analysis was conducted to identify how the ex-
tracted attributes could be grouped and to examine the term frequencies of
their values. This analysis aimed to reveal patterns, trends, and outstanding
approaches within the data, enhancing the understanding of the scope and im-
pact of LLM applications in SE.

Analysis of Extracted Attributes:

• Task Context: The SE Task Category was chosen to delineate the range
of Software Engineering tasks explored within the studies. This catego-
rization aids in identifying and grouping papers that address similar SE
challenges, facilitating an understanding of the common and divergent
problem domains that LLMs are applied to in SE research.

• Evaluation Criteria: Comprising Metrics and Benchmarks, this group-
ing was selected to outline the standards and reference frameworks em-
ployed in evaluating LLM performance within SE tasks. It serves to stan-
dardize the varied evaluation approaches, enabling a comparison across
studies based on their assessment methodologies.

• Methodological Approach: Incorporating Training Approach, Sam-
pling Strategy, and Evaluation Strategy, this classification elucidates the
procedural nuances of the studies. The rationale for selecting these at-
tributes is to capture the diversity in methodological approaches, including
model training, data sampling, and the blend of quantitative and qualita-
tive evaluation strategies. This facilitates an analytical perspective on the
methodological rigor and innovation within the LLM applications in SE.

16

• Insights and Reflections: Encompassing Challenges and Limitations,
Results and Findings, and Authors’ Interpretation, this assembly was de-
lineated to provide an overarching view of the research outcomes. It aims
to crystallize the significant discoveries, the obstacles encountered, and
the authors’ own reflections on their findings. By examining these at-
tributes, the analysis seeks to underscore the practical implications and
future research directions emerging from the current body of work.

After extracting structured information from the reviewed papers, term fre-
quencies for the attributes have been summarized to identify trends, outstanding
approaches, and patterns.

For the attribute SE Task Category, research papers focusing on Code Gener-
ation lead with 5 occurrences, followed by Requirements Classification, Software
Effort Estimation, Vulnerability Detection, and Debugging, each with 2 occur-
rences. A paper can appear in multiple SE Task categories, for example, in
Code Generation for a Debugging task.

The most common metrics used are Recall (5 occurrences), F1-score and
Accuracy (referred to as Success Rate, both 4 occurrences), and Precision (3
occurrences). These metrics are widely used for quantitative and comparative
evaluations in classification tasks with categorical results. AUC and FPR ap-
peared in 2 studies each, while other metrics like statistical significance tests,
MAE, cosine similarity, SHAP (Explainability), NDCG, and various similarities
each have 1 occurrence.

For training approaches, the majority of the papers utilize a Pre-trained
foundational model (9 occurrences). Four papers use foundational models via
API access, such as ChatGPT. Two works adopt the Fine-tuning approach with
domain-specific data. Other approaches, including transfer learning, prompt
learning, self-learning, and combining LLMs with explainable AI or traditional
ML models, each occur once.

As the attributes Challenges and Limitations, Results and Findings, Authors’
Interpretation, and Sampling Strategy involve capturing more summarized de-
scriptions than categorical values, the term frequencies are shown in separate
word clouds. These word clouds emphasize emerging words within each at-
tribute, highlighting key trends and insights visually depicted in Figure 5.

With this approach, it is intended to reveal insights that are not immediately
visible in individual papers but become evident through the aggregated analy-
sis of data from multiple studies. The systematic categorization and attribute
selection process is designed to be iterative, allowing for the identification of
thematic clusters and methodological trends as the review progresses. Impor-
tantly, this method is aimed at recognizing common challenges and delineating
limitations and weaknesses in the evaluation and interpretation methodologies
across the reviewed studies. Consequently, this comparative analysis is designed
not only to deepen the understanding of prevalent issues in the field but also to
identify areas requiring methodological refinement and further research in the
application of LLMs to Software Engineering tasks.

17

Figure 5: Word cloud visualization of term frequencies across four attributes:
”Challenges and Limitations” (upper left), ”Results and Findings” (upper
right), ”Authors’ Interpretation” (lower left), and ”Sampling Strategy” (lower
right), illustrating key thematic focuses in the reviewed literature.

3.4 Ongoing identification of Patterns

In the process of systematically examining and analyzing the attribute val-
ues outlined in Subsection 3.3, discernible patterns emerged, elucidating the
core challenges targeted by distinct groups of research papers. Notably, certain
groups are actively addressing issues related to the limited representativeness
of training data, implementing a variety of data sampling strategies to allevi-
ate these concerns. Concurrently, other groups concentrate on exploiting the
inherent characteristics of Large Language Models (LLMs), particularly their
non-deterministic output. These thematic clusters signify the diverse method-
ological approaches and areas of emphasis within the realm of software engi-
neering research involving LLMs. The subsequent discussion introduces these
groups in detail, highlighting their common objectives, challenges faced, and
the innovative methods applied to navigate these obstacles.

Group 1: Different data sampling strategies for coping Data Limitation
Challenges in AI-Enhanced Planning and Estimation Tasks:

The studies within this group address prevalent data-related challenges, in-
cluding imbalance [8], label noise [14], representativeness to real world projects
and bias [1] [6]. They are distinguished by their use of diverse and special-
ized sampling strategies such as project-level cross-validation [8], self-supervised
labeling [14], outlier removal, and magnitude discretization [6].

• NoRBERT: Transfer Learning for Requirements Classification [8]

• PRCBERT: Prompt Learning for Requirement Classification using BERT-

18

based Pretrained Language Models [14]

• Evaluation of Context-Aware Language Models and Experts for Effort
Estimation of Software Maintenance Issues [1]

• GPT2SP: A Transformer-Based Agile Story Point Estimation Approach
[6]

Group 2: Software Quality and Security Evaluation Focused on
Robustness and Generalizability:

This group delves into enhancing software systems’ quality and security,
prioritizing the evaluation of model performance on unseen projects to gauge
generalization to new data and emphasizing the significance of False Positive
rates for reliable security and quality assessments. By focusing on these aspects,
the studies aim to ensure the robustness and applicability of their methodologies
across diverse and previously unseen software projects, highlighting efforts to
minimize false alarms while effectively detecting genuine issues.

• DiverseVul: A Novel Vulnerable Source Code Dataset for Deep Learning-
Based Vulnerability Detection [4]

• Transformer-Based Language Models for Software Vulnerability Detection
[22]

Group 3: LLM Reliability and Consistency in Code Generation and De-
bugging :

Group 3 delves into the challenges and opportunities presented by the non-
determinism of LLM outputs in code generation and debugging. While one
study explicitly examines non-determinism’s effects on code quality and reliabil-
ity [15], the others implicitly leverage this characteristic by employing strategies
that involve multiple attempts or iterations. Specifically, one approach involves
attempting bug fixing multiple times [19], and another generates several code
snippet variants to filter, rank, and refine [18].

• A Lightweight Framework for High-Quality Code Generation [18]

• LLM is Like a Box of Chocolates: the Non-determinism of ChatGPT in
Code Generation [15]

• An Analysis of the Automatic Bug Fixing Performance of ChatGPT [19]

• Extending the Frontier of ChatGPT: Code Generation and Debugging [17]

Group 4: LLMs in Dialog mode - Framework in automatic Feedback for
Code Generation Tasks:

19

This group explores LLMs’ dialogue capabilities in tasks like bug fixing, au-
tomatic program repair (ARP), and debugging. The research contrasts single-
prompt generation with the improved outcomes from providing feedback, noting
performance enhancements but also the need for balance due to the additional
feedback effort . Future studies on automated feedback are encouraged [19].
[18] introduces a framework for high-quality code generation by automatically
providing feedback on potential code or security smells. [25] demonstrate the
efficacy of iterative feedback in ARP tasks, showcasing conversational AI’s po-
tential. However, [17] identifies limited adaptability in refining solutions based
on feedback, with a success rate of 36.7% in revised attempts, indicating room
for improvement in LLMs’ debugging and learning from errors.

• A Lightweight Framework for High-Quality Code Generation [18]

• Conversational automated program repair [25]

• Extending the Frontier of ChatGPT: Code Generation and Debugging [17]

• An Analysis of the Automatic Bug Fixing Performance of ChatGPT [19]

4 Results

5 Conclustions

References

[1] Mohammed Alhamed and Tim Storer. Evaluation of context-aware lan-
guage models and experts for effort estimation of software maintenance
issues. In 2022 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 129–138. IEEE, 2022.

[2] Friedrich L Bauer. Software engineering—wie es begann. Historische No-
tizen zur Informatik, pages 72–75, 2009.

[3] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie
Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A
survey on evaluation of large language models. ACM Transactions on In-
telligent Systems and Technology, 2023.

[4] Yizheng Chen, Zhoujie Ding, Lamya Alowain, Xinyun Chen, and David
Wagner. Diversevul: A new vulnerable source code dataset for deep learn-
ing based vulnerability detection. In Proceedings of the 26th International
Symposium on Research in Attacks, Intrusions and Defenses, pages 654–
668, 2023.

[5] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sen-
gupta, Shin Yoo, and Jie M Zhang. Large language models for software

20

engineering: Survey and open problems. arXiv preprint arXiv:2310.03533,
2023.

[6] Michael Fu and Chakkrit Tantithamthavorn. Gpt2sp: A transformer-based
agile story point estimation approach. IEEE Transactions on Software
Engineering, 49(2):611–625, 2022.

[7] Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan Shi, Linhao Yu,
Yan Liu, Jiaxuan Li, Bojian Xiong, Deyi Xiong, et al. Evaluating large lan-
guage models: A comprehensive survey. arXiv preprint arXiv:2310.19736,
2023.

[8] Tobias Hey, Jan Keim, Anne Koziolek, and Walter F Tichy. Norbert: Trans-
fer learning for requirements classification. In 2020 IEEE 28th International
Requirements Engineering Conference (RE), pages 169–179. IEEE, 2020.

[9] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu
Luo, David Lo, John Grundy, and Haoyu Wang. Large language models
for software engineering: A systematic literature review. arXiv preprint
arXiv:2308.10620, 2023.

[10] Staffs Keele et al. Guidelines for performing systematic literature reviews
in software engineering, 2007.

[11] Barbara Kitchenham, Lech Madeyski, and David Budgen. Segress: Soft-
ware engineering guidelines for reporting secondary studies. IEEE Trans-
actions on Software Engineering, 49(3):1273–1298, 2022.

[12] Stefan Kombrink, Tomas Mikolov, Martin Karafiát, and Lukás Burget.
Recurrent neural network based language modeling in meeting recognition.
In Interspeech, volume 11, pages 2877–2880, 2011.

[13] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha
Sen. Codamosa: Escaping coverage plateaus in test generation with pre-
trained large language models. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), pages 919–931. IEEE, 2023.

[14] Xianchang Luo, Yinxing Xue, Zhenchang Xing, and Jiamou Sun. Prcbert:
Prompt learning for requirement classification using bert-based pretrained
language models. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, pages 1–13, 2022.

[15] Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. Llm is like
a box of chocolates: the non-determinism of chatgpt in code generation.
arXiv preprint arXiv:2308.02828, 2023.

[16] Brian Randell. The 1968/69 nato software engineering reports. History of
software engineering, 37, 1996.

21

[17] Fardin Ahsan Sakib, Saadat Hasan Khan, and AHM Karim. Extending
the frontier of chatgpt: Code generation and debugging. arXiv preprint
arXiv:2307.08260, 2023.

[18] Mohammed Latif Siddiq, Beatrice Casey, and Joanna Santos. A
lightweight framework for high-quality code generation. arXiv preprint
arXiv:2307.08220, 2023.

[19] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. An
analysis of the automatic bug fixing performance of chatgpt. arXiv preprint
arXiv:2301.08653, 2023.

[20] Ian Sommerville. Software Engineering, pages 5–13. Publisher Name, 9
edition, 2011.

[21] Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo. Chatgpt vs sbst:
A comparative assessment of unit test suite generation. IEEE Transactions
on Software Engineering, 2024.

[22] Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe,
Josef Pieprzyk, and Surya Nepal. Transformer-based language models for
software vulnerability detection. In Proceedings of the 38th Annual Com-
puter Security Applications Conference, pages 481–496, 2022.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

[24] Jesse Vig. A multiscale visualization of attention in the transformer model.
arXiv preprint arXiv:1906.05714, 2019.

[25] Chunqiu Steven Xia and Lingming Zhang. Conversational automated pro-
gram repair. arXiv preprint arXiv:2301.13246, 2023.

[26] Catherine Yeh, Yida Chen, Aoyu Wu, Cynthia Chen, Fernanda Viégas, and
Martin Wattenberg. Attentionviz: A global view of transformer attention.
IEEE Transactions on Visualization and Computer Graphics, 2023.

[27] Zibin Zheng, Kaiwen Ning, Jiachi Chen, Yanlin Wang, Wenqing Chen,
Lianghong Guo, and Weicheng Wang. Towards an understanding of
large language models in software engineering tasks. arXiv preprint
arXiv:2308.11396, 2023.

[28] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu
Pitis, Harris Chan, and Jimmy Ba. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910, 2022.

[29] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford,
Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language
models from human preferences. arXiv preprint arXiv:1909.08593, 2019.

22

